在线免费看污视频I亚洲欧美另类在线I狠狠干天天I99ri在线观看I九一avI女生毛片Ixxxrtxxx性国产Ia√在线视频I欧美日一本Ixxxx大片I丝袜五月天I国产肥熟I青青青在线视频I天堂网在线中文I亚洲综合成人avI日韩欧美中文I有码一区I亚洲电影avI欧美日韩乱国产I国产特黄

新聞活動


    
首頁新聞活動 新聞
返回

技術分享 | 仿真和建模在高功率半導體激光器封裝中的關鍵作用

發布日期:2020-11-16

Originally published on Laser Focus World?

炬光科技多年來一直注重基礎研究,每年在專業期刊、雜志、學術會議等平臺發表各類技術文章,并曾出版世界第一本高功率半導體激光器封裝專著。近日,《Laser Focus World》發表了炬光科技首席科學家王警衛等撰寫的技術文章《Simulation and modeling play key roles in high-power diode-laser packaging》,文章針對激光技術發展對封裝技術提出的新挑戰,介紹了仿真和建模在高功率半導體激光器封裝中發揮的關鍵作用。

文章概要如下:

高功率半導體激光器已廣泛應用于很多行業。隨著激光技術的發展,其輸出光功率越來越高,激光巴條的腔長也相應地由1mm增加到了4mm。因此,巴條的廢熱能量密度從200W/cm2急劇增加到>600W/cm2。為獲得低的“SMILE”,如<1μm,或防止巴條在貼片鍵合后出現裂紋,需要采用腔長1.5mm~4mm的巴條,并優化封裝結構,最大限度地降低熱應力。這兩者都給現有的封裝技術帶來了挑戰,從而有必要使用有限元模型(FEM)來計算和模擬高功率半導體激光器的熱行為和熱應力管理。

我們研究了在連續波(CW)或準連續波(QCW)模式下,不同封裝結構有限元模擬技術的應用,所涉及的計算和模擬仿真都是基于炬光科技的產品,包括單巴傳導冷卻/微通道系列、傳導冷卻G-stack、水冷疊陣和面陣。我們還提出了在制造高功率半導體激光器之前利用FEM工具進行熱與應力模擬的指導方針。此類模擬仿真結果可有效降低封裝結構或激光系統出現的潛在熱與應力風險,并有助于降低試驗成本、優化流程,最終滿足不同客戶的需求。

Simulation and modeling play key roles in high-power diode-laser packaging

Finite-element method (FEM) simulations reduce potential thermal and stress risks when designing packaging structures for high-power laser-diodes.

JINGWEI WANG, TUANWEI FU, and XUEJIE LIANG

FOCUSLIGHT TECHNOLOGIES INC.

High-power diode-lasers (HPDLs) are now widely used for industrial (materials processing procedures such as welding, cutting, surface treatment, etc.), scientific, and medical applications. The need to design advanced high-power laser packages, to understand the physics of the behaviors of these packages and its interfaces, and to prevent possible functional (optical) and mechanical (physical) failures are of obvious practical importance. As laser technologies develop, the output power of HPDLs has grown, along with the cavity length of diode laser bars increasing from 1 to 4 mm. As a result, the waste-heat energy density of a single diode laser bar has increased dramatically from 200 W/cm2 to more than 600 W/cm2.

Many failures in HPDLs—for example, bonding interfaces—are directly related to the packaging.1 Thermal behaviors of the bonding interfaces and thermal stresses between the bonding interfaces are the major factors affecting the functional and structural performance of HPDLs. If the accumulated heat cannot readily escape, the elevated temperature and thermally induced stress at the location of the p-n junction will not only adversely affect the output power, slope efficiency, threshold current, and device lifetime, but could also cause spectral broadening and wavelength shifts.2 The emitting wavelengths will shift if the junction temperature of the emitters across the array is not well controlled and/or not uniform. The above-mentioned scenarios make the thermal management of high-power laser devices a major challenge in designing, manufacturing, and utilizing HPDLs.

Simulation and modeling of thermal stress in packaging of HPDLs

微信圖片_20201225220659.png

FIGURE 1. An AL01 1064 nm laser module for lidar. (Courtesy of Focuslight)

Automotive lidar has become a very popular application for lasers in recent years. Focuslight Technologies (X’ian, China) offers various products for automotive lidar applications. Focuslight’s AL01 laser module (see Fig. 1) is designed for flash lidar applications. The module is a diode-pumped solid-state (DPSS) laser that uses Q-switch technology to enable pulse energies of up to 1.5 mJ per 3 ns pulse at 1064 nm wavelength. To ensure its stability at automotive-grade temperatures (-40° to 80°C), the module was designed and manufactured with advanced bonding and assembly processes; some special materials have been used as well.

微信圖片_20201225220703.png

FIGURE 2. Structure and stress: mismatched CTE (a) and matched CTE (b).

During the design process, the coefficient of thermal expansion (CTE)-matched principle was taken into account as a crucial factor. CTE mismatch between the laser bar and the thermoelectric cooler (TEC) could bring large thermal stress to the packaging process, cause a lot of cracks at the corner of the TEC, and potentially lead to device failure. The optimized selection of materials and dimensions has been achieved through repeated calculation and simulation modeling (see Fig. 2). By doing this, the final packaging structure has prevented cracks from forming at the corner of the TEC. Digital simulations helped the developer to find the right solution rapidly. Mass production and stable performance of AL01 modules have proved that the package design is optimal.

Industrial applications. Kilowatt- or even hundred-kilowatt-level HPDL stacks are widely used for scientific and industrial applications (such as annealing, bonding, surface treatment, and others). A good example is Focuslight’s 6 kW DLight Series product. Applications such as solid-state laser pumping and materials processing require good beam quality from the diode-laser stack. The near-field nonlinearity along the laser bar (also known as “SMILE”), or the slight bend of the horizontal line connecting the emitters in the bar, is the main obstacle to achieving good beam quality. Minimizing the SMILE of HPDLs is key to achieving high brightness along the fast axis.

Thermal stress causes mechanical strain in the diode and changes the band structure, thus changing the characteristics of the diode laser with respect to threshold, wavelength, polarization, and SMILE. In addition, induced thermal stress in the laser device may cause damage to the laser chips/bars and consequently shorten lifetime of the device.

SMILE and stress controlling.3 The thermal stress affecting the performance and reliability of HPDLs is mainly caused by the CTE mismatch between the mounting substrate and laser chip. For HPDL packaging, packaging materials with high thermal conductivities and CTEs that match those of the semiconductor materials—such as gallium arsenide (GaAs), indium phosphide (InP), and gallium nitride (GaN)—are desired. Thermal-stress management is one of the most critical challenges to packaging of HPDLs.

The bonding of diode laser chips onto their heat sinks is the most important step in the packaging process. Mechanical stress generated in the bonding process has typically always caused chip deformation (SMILE) as the device cooled down from the solder melting point to room temperature. As a result, how to decrease the mechanical stress in the packaging process becomes the key to minimizing the SMILE value.

微信圖片_20201225220707.png

FIGURE 3. Two different laser-diode packaging structures: HMCC (a) and DMCC (b).

微信圖片_20201225220711.png

FIGURE 4. Simulation and experiment results: simulated stress of HMCC (a); simulated stress of DMCC (b); and experimental SMILE value with increasing CuW thickness (c).

For digital-simulation modeling of this process, different packaging structures and materials were selected (see Fig. 3); the simulated results are shown in Figure 4a and 4b. A continuous-wave (CW) 200 W diode-laser bar with a thermal density of greater than 500 W/cm2 can be bonded on a microchannel cooler (MCC) heat sink. Thermal-dissipation capability should be considered in the simulation, as well as how to minimize the “SMILE” value. The finite-element model (FEM) simulation results show that the compression stress on the laser bar decreases with the increase of copper-tungsten (CuW) submount thickness, as the CuW submount works as a buffer layer and can thus absorb stress. However, the laser bar out-of-plane strain (SMILE value) is approximately zero when the diode-laser array is directly bonded onto the heat sink without a submount; the SMILE value is maximized when the thickness of the CuW submount is increased to 44% of the heat sink. Beyond this point, the SMILE value decreases with increasing CuW submount thickness. As seen in Figure 4c, the experimental results are well aligned with the simulation results.2 Therefore, the thickness of the submount affects the near-field nonlinearity of a laser bar significantly.

Simulation and modeling of heat in packaging of HPDLs

Scientific applications. Besides the SMILE, spectral width is also one of the key parameters of a diode-laser vertical stack. Improving the stack’s spectral performance is very important for increasing production yield, reducing costs, and enhancing competitiveness. For some scientific applications, narrow spectral width is especially important.

Thermal design of HPDLs is critical, as a rise of junction temperature at the location of the p-n junction will adversely affect the output power, slope efficiency, threshold current, and lifetime of the device if the accumulated heat cannot be easily dissipated. Excessive heat can also cause spectral broadening and wavelength shift. Thermal management of HPDL devices has become a major challenge in laser design, manufacturing, and application.

微信圖片_20201225220715.png

FIGURE 5. Design of parallel format for liquid cooling.

In the design process for a vertical-stack laser, one of the main problems is the thermal crosstalk, which seriously affects the cooling efficiency. To avoid thermal crosstalk, a parallel liquid-cooling format is designed to overcome heat unevenness between the bars, effectively improving the thermal dissipation. Figure 5 shows the design of the parallel format of liquid cooling.

微信圖片_20201225220721.png

FIGURE 6. Thermal distribution of a MCC-based sack in CW mode.

In the following case, the thermal design and structure optimization of a vertical-stack laser with more than 20 bars was simulated. The simulation results in Figure 6 show that most of the heat is dissipated via the cooling-flow liquid. There is no significant accumulation of heat and the temperature gradient of each bar is relatively uniform. The maximum temperature on the stack is 60.13°C.

Based on the thermal simulation, the structure is optimized in many aspects, such as cooling-water flow rate, microchannel cooler design, and water distribution. The heat is taken away as quickly as possible by the cooling water, ensuring that no thermal accumulation exists between the bars.

Although the laser bars in vertical stacks are simultaneously conduction cooled and microchannel-liquid cooled, temperature nonuniformity remains among the bars due to thermal crosstalk and/or liquid flow nonuniformity. This nonuniformity can alter the wavelength of the bars and broaden the spectrum of the stacks.

微信圖片_20201225220725.png

FIGURE 7. Relationship between water flow and temperature.

To achieve a very narrow spectral width, in our work, advanced packaging processes have been used to maintain uniformity of temperature distribution. First, total temperature distribution is simulated and calculated (see Fig. 7). Next, the wavelength of each bar is selected to match the temperature distribution based on the simulation results. The third and last step is to use optimized packaging technology to achieve the same output wavelength. Using this method, the spectrum broadening of a vertical stack can be effectively controlled.

Simulation and modeling of heat and stress in optical collimation microlenses

Optical collimation microlenses, including fast-axis collimators (FACs), slow-axis collimator (SAC) arrays, homogenizers, diffusers, collimators, beam transformation systems (BTS), and so on, are widely used in DPSS lasers, materials processing, 3D sensing, immersive photolithography, flexible display, lidar, and other application fields. These microlenses are commonly fixed on mechanical frames by adhesives. Controlling the stress on lenses and reduce the risk of cracks is therefore of great importance.

微信圖片_20201225220938.png

FIGURE 8. Stress optimization on adhesion layer.

A typical example is shown in Figure 8. A disastrous crack is found on a diffuser, although the adhesion is good. Simulation was carried out to look for causes of such cracks; the simulation results show that a higher stress, up to 61.58 MPa, occurred at one corner of the diffuser, which corresponds to the actual crack. After the adhesion in the FEA model was precisely controlled and the program run again, the stress on the diffuser decreased to 32.96 MPa, as shown in the figure. The result shows the benefit of FEM in improving adhesion processes.

Easy-to-use FEM methods have been presented for evaluating the thermal performance of HPDLs and the stress distribution in HPDLs. These methods make it much easier to understand the physics of the addressed thermal phenomena and predict their thermal behavior and performance. Digital-simulation modeling should be conducted before the manufacturing of HPDLs, helping to reduce R&D costs and quickly guiding engineers to the correct approach if thermal and stress distributions in a package are taken into account. The methodology described here for the application of diode-laser packages can also be used beyond this area of engineering for the analysis and design of packaging structures.

ACKNOWLEDGEMENT

DLight is a registered trademark of Focuslight Technologies.

REFERENCES

1. X. Liu et al., J. Appl. Phys., 100, 1, 013104 (2006).

2. H. Zhang et al., “High power 250 W CW conductively cooled diode laser arrays with low SMILE,” Proc. SPIE, 11261, 112610C (Feb. 2020).

3. C. Zah et al., “Low SMILE vertically stacked laser bars enable kW modular line lasers,” High Power Diode Lasers and System Conf. (Coventry, England), 9-10 (2017); doi:10.1109/hpd.2017.8261079.

Jingwei Wang is Chief Scientist, Tuanwei Fu is CAE Engineer, and Xuejie Liang is Manager of the Design and Simulation Technology Department, all at Focuslight Technologies, Xi’an, China.

E-mails: wangjw@focuslight.com, futw@focuslight.com, and liangxj@focuslight.com; www.szhanpeng.cn.

關于炬光科技:

西安炬光科技股份有限公司成立于2007年,是一家全球領先的專業從事高功率半導體激光器、激光微光學元器件、光子技術應用解決方案的研發、生產及銷售的國家級高新技術企業。公司圍繞光子技術及應用領域,致力于為全球客戶提供高功率半導體激光器與激光微光學核心元器件及光子技術應用解決方案,形成了全面、完善的研發、生產及銷售服務體系。

上一篇:新品發布 | Flash LiDAR VCSEL光源模塊AX01 下一篇: 技術分享 | Laser Bonding of Displays
隱私偏好中心
為了使站點正常運行并為訪問者提供無縫和定制化體驗,Cookie 和其他類似技術(“Cookie”)非常重要。 Zoom 通過 Cookie 支持您使用我們的站點。 我們還通過 Cookie 允許您個性化定制您使用我們網站的方式,為您提供增強的功能,并不斷提高我們網站的表現。 如果您已啟用下面的定向 Cookie,我們可能會將根據您的賬戶類型或登錄狀態允許第三方廣告商使用他們在我們的站點上所設置的 Cookie 在我們的網站或產品上向您顯示與您相關的廣告內容。
您可以接受或拒絕除“絕對必要 Cookie”之外的所有 Cookie,或者定制下面的 Cookie 設置。 您可以隨時更改您的 Cookie 設置。 部分“絕對必要性 Cookie”可能會將個人數據傳送到美國。 要了解有關 Zoom 如何處理個人數據的更多信息,請訪問我們的隱私聲明
將下面標有“定向”的按鈕切換為關閉狀態之后,加利福尼亞州的居民可以行使“選擇拒絕出售個人信息”的權利。
接受Cookie
管理許可偏好
  • +目標定位
    我們的廣告合作伙伴可以通過我們的站點設置這些 Cookie。 這些 Cookie 可供廣告合作伙伴公司根據自有策略跟蹤您使用我們網站的情況,并可將相應信息與其他信息相結合,然后在我們的站點? ??其他站點上向您顯示相關廣告。 如果您不允許使用這些 Cookie,您將不會在 Zoom 網站或產品上看到個性化廣告。
  • +功能
    這些 Cookie 支持網站提供增強型功能和定制功能。 Cookie 可能由我們或由在我們的網頁上添加服務的第三方供應商設置。 如果您不允許這些 Cookie,那么部分或所有的這些服務可能無法正常運行。
  • +性能
    這些 Cookie 使我們能夠計算訪問量和流量來源,以便我們評估和改進我們的網站性能。 這些 Cookie 可幫助我們了解哪些頁面最受歡迎,哪些頁面最不受歡迎,并了解訪問者在網站上的瀏覽方式。 如果您不允許這些 Cookie,我們將不知道您何時訪問過我們的網站,也無法監測網站性能。
  • +絕對必要

    始終處于活動狀態

    這些 Cookie 對于網站的運行是絕對必要的,且無法在我們的系統中關閉。 通常,只有在您做出近乎服務請求的行為(例如,設置您的隱私偏好、登錄或填寫表單)時才會設置這些 Cookie。 您可以將瀏覽器設置為阻止或提醒您注意這些 Cookie,但網站的某些部分可能會無法運行。
確認我的選擇
主站蜘蛛池模板: 天堂在线免费观看视频| 国产中文字幕不卡| 日本亚洲在线| 成人性生交大片免费卡看| 亚洲情趣| 成人午夜视频一区二区播放| 性欧美xxxx| 久久中文综合| a级在线视频| 亚洲咪咪| 天堂网在线观看免费视频| 五月激情婷婷丁香| 久久精热| 欧美色图在线观看| 伊人久久亚洲综合| 四虎在线免费观看| 久久午夜剧场| 欧亚免费视频| 任你操精品视频| 男女瑟瑟网站| 国产91在线免费视频| 欧美日韩国产123| 韩国精品一区| 蜜桃av噜噜一区二区| 伊人黄色网| 国产四区| 老司机深夜免费福利| 在线看污视频网站| 永久免费看成人av的动态图| 久久久久久毛片| 黑人操亚洲| 国产第1页| 亚洲AV无码精品一区二区三区| 国产调教打屁股xxxx网站| 成年人在线视频免费观看| 亚洲精品1区2区3区| melody在线高清免费观看| 老熟妻内射精品一区| 国产麻豆剧果冻传媒白晶晶| 美女黄色毛片视频| 加勒比hezyo黑人专区| aaaaaa毛片| 日韩6699人妻熟女毛片| 成人av电影观看| 日本亚洲天堂| 老司机精品导航| 欧美少妇一区二区| 人妻一区二区在线| 国产精品电影一区二区三区| 国产 欧美 自拍| 欧美日韩激情一区| jizz网站| 狠狠狠狠狠| 91喷水| 在线精品免费视频| www.精品久久| 特级a毛片| 日本在线视频中文字幕| 色999在线观看| 主播视频在线| 激情视频久久| av在线不卡观看| 亚洲av无码一区二区三区网址| 色狠狠一区二区三区香蕉| 国模无码视频一区二区三区| 亚洲第一黄色网| 黄频在线| 人妻熟人中文字幕一区二区| 欧美最猛性xxxx| 久久夜夜爽| 日韩一区三区| www.xxx在线观看| 久久久久久久久久久91| 国产18在线| 国产福利电影| 有在线观看的片www网址吗| 欧美日韩综合一区二区三区| 婷婷伊人久久| 深夜视频在线播放| 日鲁鲁| 91秒拍福利视频| 天堂在线www| 日韩一级黄色| 中文字幕免费av| 钻石午夜影院| 污动漫网站| 一级中文字幕| 伊人22222| 国产精品第一视频| 久操91| 麻豆毛片| 夜间网站| 亚洲综合在线一区二区| 午夜吃瓜| 国产精品 欧美精品| av大全在线| 伊人3| 亚洲精品美女在线观看| 成人在线欧美| 手机成人av在线| 96精品视频| 看看黄色片| 91麻豆精品91久久久久同性| 99热1| 色综合久久天天综合网| 不卡一区二区在线| 无码人妻丰满熟妇啪啪欧美| 美女扒开内裤让男人桶| 成人黄色免费观看| 日韩久久电影| 一道本在线视频| 亚洲永久精品视频| 久久精品国产欧美亚洲人人爽 | 青青草视频免费播放| 成年网站在线播放| 青青爽在线视频| 中文字幕永久在线视频| 日本性欧美| 夜夜操夜夜操| 一级黄色播放| 久久精品天堂| 国产老妇视频| 国模一区二区| 亚洲系列在线观看| 777片理伦片在线观看| 日韩国产小视频| 国产女人在线视频| 婷婷黄色网| 久久刺激| 九九久久视频| av网站在线播放不卡| 四虎国产精品成人永久免费影视| 日本免费一二三区| 一区二区久久精品66国产精品| 欧美一级二级片| 爱搞逼综合网| 成人午夜三级| 国产精品短视频| 亲嘴脱内衣内裤| 在线黄色av网站| 三级成人网| 粉嫩久久久久久久极品| 岛国av影院| 日本午夜在线视频| 又粗又硬的毛片aaaaa片| 亚洲自拍偷拍视频| 啪啪综合| 中文字幕在线轮第一页| 欧美成人精品一区二区免费看片| 久久一级黄色片| 久久精品www| 草啪啪| 精品久久蜜桃| 大帝av| av黄在线| 人人澡人人干| 亚洲欧洲日韩在线观看| 欧美三级久久| 欧美 日韩 成人| 日韩第三页| 日一日射一射| 免费成人av片| 亚洲经典视频| 粉嫩久久久久久久极品| 青青草超碰| 欧洲裸体片| 婷婷五月精品中文字幕| 久久99久久精品| 乌克兰极品av女神| 中文字幕影片免费在线观看 | 开心色婷婷| 用力别停受不了了王总| 免费人成在线观看| 永久免费精品| 美女搞黄在线观看| 国产成人中文字幕| 日本成人在线视频网站| 婷婷激情电影| 国产美女在线播放| 少妇淫片免费看大片动漫版app| 亚洲一区二区精品视频| 国产乱码久久久久| 在线视频 一区二区| 久久精品国产99精品丝袜| 美女涩涩网站| 天堂xxxx| 美女色呦呦| 欧美久久综合| 第一福利在线| japanesehdxxxx| 日本最新中文字幕| 中国一区二区视频| 久久综合亚洲天堂| 在线免费观看精品| 精品麻豆av| 宅男av| 国产小视频一区| www,五月天,com| 99riav1国产精品视频| 国产精品自拍网| 激情综合色| 青青草原国产在线| 公和我乱做好爽添厨房h| 不卡中文| 日本r级视频| 91福利网| www.jizz在线观看| 亚洲黄色大片| 日韩视频一区在线观看| 老司机深夜免费福利| 精品夜夜澡人妻无码av| 国产一在线| 亚洲无线一线二线三w9| 久久精品欧美视频| 日韩一本| 成年男女免费视频| 欧美美女爱爱视频| 国产精品.xx视频.xxtv| 哪里有毛片看| 欧美日韩免费在线观看| 福利91| 高潮抽搐在线观看| 自拍视频一区二区三区| 手机在线看黄色| 久久99久久98精品免观看软件| 91天天射| 国产精品毛片va一区二区三区| 国产91在线视频| 色综合欧美| 91麻豆网站| 午夜av影视| 琪琪原网址| 97超碰总站| 日韩性猛交| 日韩专区一区二区三区| 国模视频一区| 老版水浒传83版免费播放| 国产极品探花| 一级黄色裸体片| 日韩精品123| 亚洲一区二区精品| 日本一区二区黄色| 永久免费,视频| 一区二区偷拍视频| 国产又黄又硬又粗| 丁香六月婷婷| av88av| 精国产品一区二区三区a片| 欧美乱色| 伊人精品视频在线观看| 天天干少妇| 久草视频国产| 国产网址你懂的| 亚洲欧美精品一区| 日本中文字幕在线视频| 女人被男人操| 国产91片| 久久久久久av无码免费网站下载| 欧美日韩一级二级三级| 亚洲乱码国产乱码精品精98午夜| 午夜影院120| 国产精品成久久久久三级| 亚洲91久久| 美女国产一区| 久久中文字幕影院| av在线小说| 国产白浆在线| 色999韩| 黄网站色| 国产专区一区| 四虎视频国产精品免费入口| 大肉大捧一进一出视频| 亚洲国产成人精品91久久久| 欧美激情天堂| 特一级黄色| 在线看的网站| 欧美精品一级| 国产亚洲女人久久久久毛片| 国产精品男同| av资源部| 中文字幕人妻色偷偷久久| 精品三级毛片| 青青国产视频| 欧美日韩国产一二三| 亚洲天堂自拍偷拍| free性m.freesex欧美| 午夜寂寞影视| 欧美成人女星| 在线观看黄色网| 久久国内| 蜜桃视频欧美| 国产高清一区二区三区综合四季| 97超碰人人模人人人爽人人爱| 欧美日韩妖精视频| 黄色一级免费网站| 91中文字幕在线视频| 久久免费小视频| 日本老师xxxx88免费视频| chinese黑人亚洲人videos| 国产在线操| 日韩午夜精品视频| 午夜日韩电影| 91性| 久久精视频| 嫩草一二三| 久青草视频在线观看| 金8天国av| 好紧好爽好深再快点| 日韩高清欧美| 精品国产黄| 91无打码| 伊人久久色| 色香欲综合网| 国产95在线| 男女视频在线观看| 在线一区视频| 窝窝午夜精品一区二区免费| 免费涩涩| 美女视频黄色| 中文按摩av高潮片| 在线观看亚洲专区| 91在线看黄| 黑人操少妇| 好屌妞视频这里有精品| 农村少妇久久久久久久| 色香蕉av| 国产人妻777人伦精品hd| 成人在线视频播放| 91蜜臀福利色婷婷| 国产一区二区三区视频免费观看| 精品传媒一区二区| 久久综合免费视频| 五月天丁香视频| 国产欧美视频在线| 人与动物av| 国产精品欲| 一级特黄裸片免费播放| 亚洲高潮无码久久| 亚洲爆乳无码专区| 欧洲黄色网| 亚洲性在线| 日韩电影中文字幕| 一二三四精品| 日韩一页| 黄色aa网站| 久久精品精品| 黄色片a级片| 午夜精品视频| 日韩免费影院| 日韩激情片| 色在线播放| 强睡邻居人妻中文字幕| 91精品国产成人www| 人人干视频在线| 播播网色播播| 一区二区精品视频| 亚洲乱码在线| 91热视频| 精品视频一区二区三区在线观看| 91精品国产色综合久久不卡蜜臀| 欧美在线aa| 99re在线| 在线看日韩av| 91精品视频一区二区三区| 欧美内谢视频| a看片| 欧美精品 在线观看| 91精品国产综合久久福利软件| 在线观看免费视频黄| 日本吃奶摸下激烈网站动漫| 玖草影院| 欧美精品第一区| 中文字幕在线字幕中文| 夜夜天天拍拍| 精品久久久久久亚洲综合网站 | 久久久久久少妇| 99九九视频| 91国偷自产中文字幕久久| 成人免费影片| 夜夜躁狠狠躁日日躁麻豆老人| 国产乱码一区| 国产高潮一区| 欧美www在线观看| 国产成年人| 日韩女同强女同hd| 免费看黄色片的网站| 电影91久久久| 国产盗摄x88av| 伊人网伊人影院| 亚洲国产一区二区三区精品| 我和岳m愉情xxxⅹ视频| 亚洲色图第一页| 国产清纯白嫩初高中在线观看性色| 欧美性综合| 黄片一区二区| 国内偷拍久久| 男女三级视频| 国产精品久久久一区二区| 国产精品主播| 97在线观看免费视频| 亚洲综合一| 婷婷丁香视频| 九色丨蝌蚪丨成人| 日本中文字幕在线| 国产少妇在线| 国产成人麻豆免费观看| wwwxxx亚洲| av基地| 亚洲人成在线观看| 一区二区三区毛片| 欧美视频在线不卡| 国产永久av| 欧美日韩18| 国产乱码一区二区三区| 黄视频网站在线观看| 最近中文字幕国语免费高清6| 可以免费看的黄色网址| 亚洲成年人片| 三级a毛片| 91成人免费电影| 欧美成人女星| 人人爱人人射| 国产精品欧美亚洲| 日韩欧美一级片| 精品一二三区| 在线有码视频| 亚欧精品在线| 日本理论片| 狠狠操91| 夜夜操天天| 免费久久精品视频| 又爽又黄又无遮挡| 免费播放黄色片| 久久亚洲国产成人精品性色| 手机看片福利久久| 天天干狠狠| 2018天天弄| 乱淫av| 91视频在线视频| 手机在线免费看av| 国产一区二区久久精品| 久久两性视频| 爱情岛成人| 草久久av| 成人xvideos免费视频| 久久咪咪| 一本综合久久| 色丁香在线| 天堂网视频| 日本激情一区二区| 欧美成网| 午夜影院在线视频| 午夜精品福利视频| 91啦丨九色丨蝌蚪丨中文| 毛片一区| 一级片免费在线观看| 黄久久久| 爱爱免费网站| 日本大乳高潮视频在线观看| 色男天堂| 日日淫| 久久精品小视频| 亚洲第一毛片| 日韩一二在线观看| 香蕉视频在线看| jizz国产视频| 色综合999| 制服.丝袜.亚洲.中文.综合懂 | 狼人综合伊人| 91精品999| www天堂网| 色乱码一区二区三区网站| mm131美女视频| 欧美成人午夜免费视在线看片| 一区二区三区网站| 激情视频网站| 人人搞人人射| 2019中文字幕在线观看| 日韩午夜免费| 中国老太婆性毛茸茸| 美女在线免费视频| 宅男噜| 色姑娘天天干| 99免费看| 日本aaaa级毛片| 黄色中文字幕| 国产av无码专区亚洲av| 精品福利视频一区二区| 亚洲午夜久久久久| 日日干狠狠干| 国产黄片毛片| 久操视频在线免费观看| 国产精品 色| 自拍偷拍小视频| 一区二区在线免费观看| 成人福利网站在线观看| 91在线高清视频| 久久精品视频中文字幕| 天天干天天色天天| 国产精品日韩在线观看|