在线免费看污视频I亚洲欧美另类在线I狠狠干天天I99ri在线观看I九一avI女生毛片Ixxxrtxxx性国产Ia√在线视频I欧美日一本Ixxxx大片I丝袜五月天I国产肥熟I青青青在线视频I天堂网在线中文I亚洲综合成人avI日韩欧美中文I有码一区I亚洲电影avI欧美日韩乱国产I国产特黄

新聞活動


    
首頁新聞活動 新聞
返回

技術分享 | 仿真和建模在高功率半導體激光器封裝中的關鍵作用

發(fā)布日期:2020-11-16

Originally published on Laser Focus World?

炬光科技多年來一直注重基礎研究,每年在專業(yè)期刊、雜志、學術會議等平臺發(fā)表各類技術文章,并曾出版世界第一本高功率半導體激光器封裝專著。近日,《Laser Focus World》發(fā)表了炬光科技首席科學家王警衛(wèi)等撰寫的技術文章《Simulation and modeling play key roles in high-power diode-laser packaging》,文章針對激光技術發(fā)展對封裝技術提出的新挑戰(zhàn),介紹了仿真和建模在高功率半導體激光器封裝中發(fā)揮的關鍵作用。

文章概要如下:

高功率半導體激光器已廣泛應用于很多行業(yè)。隨著激光技術的發(fā)展,其輸出光功率越來越高,激光巴條的腔長也相應地由1mm增加到了4mm。因此,巴條的廢熱能量密度從200W/cm2急劇增加到>600W/cm2。為獲得低的“SMILE”,如<1μm,或防止巴條在貼片鍵合后出現裂紋,需要采用腔長1.5mm~4mm的巴條,并優(yōu)化封裝結構,最大限度地降低熱應力。這兩者都給現有的封裝技術帶來了挑戰(zhàn),從而有必要使用有限元模型(FEM)來計算和模擬高功率半導體激光器的熱行為和熱應力管理。

我們研究了在連續(xù)波(CW)或準連續(xù)波(QCW)模式下,不同封裝結構有限元模擬技術的應用,所涉及的計算和模擬仿真都是基于炬光科技的產品,包括單巴傳導冷卻/微通道系列、傳導冷卻G-stack、水冷疊陣和面陣。我們還提出了在制造高功率半導體激光器之前利用FEM工具進行熱與應力模擬的指導方針。此類模擬仿真結果可有效降低封裝結構或激光系統出現的潛在熱與應力風險,并有助于降低試驗成本、優(yōu)化流程,最終滿足不同客戶的需求。

Simulation and modeling play key roles in high-power diode-laser packaging

Finite-element method (FEM) simulations reduce potential thermal and stress risks when designing packaging structures for high-power laser-diodes.

JINGWEI WANG, TUANWEI FU, and XUEJIE LIANG

FOCUSLIGHT TECHNOLOGIES INC.

High-power diode-lasers (HPDLs) are now widely used for industrial (materials processing procedures such as welding, cutting, surface treatment, etc.), scientific, and medical applications. The need to design advanced high-power laser packages, to understand the physics of the behaviors of these packages and its interfaces, and to prevent possible functional (optical) and mechanical (physical) failures are of obvious practical importance. As laser technologies develop, the output power of HPDLs has grown, along with the cavity length of diode laser bars increasing from 1 to 4 mm. As a result, the waste-heat energy density of a single diode laser bar has increased dramatically from 200 W/cm2 to more than 600 W/cm2.

Many failures in HPDLs—for example, bonding interfaces—are directly related to the packaging.1 Thermal behaviors of the bonding interfaces and thermal stresses between the bonding interfaces are the major factors affecting the functional and structural performance of HPDLs. If the accumulated heat cannot readily escape, the elevated temperature and thermally induced stress at the location of the p-n junction will not only adversely affect the output power, slope efficiency, threshold current, and device lifetime, but could also cause spectral broadening and wavelength shifts.2 The emitting wavelengths will shift if the junction temperature of the emitters across the array is not well controlled and/or not uniform. The above-mentioned scenarios make the thermal management of high-power laser devices a major challenge in designing, manufacturing, and utilizing HPDLs.

Simulation and modeling of thermal stress in packaging of HPDLs

微信圖片_20201225220659.png

FIGURE 1. An AL01 1064 nm laser module for lidar. (Courtesy of Focuslight)

Automotive lidar has become a very popular application for lasers in recent years. Focuslight Technologies (X’ian, China) offers various products for automotive lidar applications. Focuslight’s AL01 laser module (see Fig. 1) is designed for flash lidar applications. The module is a diode-pumped solid-state (DPSS) laser that uses Q-switch technology to enable pulse energies of up to 1.5 mJ per 3 ns pulse at 1064 nm wavelength. To ensure its stability at automotive-grade temperatures (-40° to 80°C), the module was designed and manufactured with advanced bonding and assembly processes; some special materials have been used as well.

微信圖片_20201225220703.png

FIGURE 2. Structure and stress: mismatched CTE (a) and matched CTE (b).

During the design process, the coefficient of thermal expansion (CTE)-matched principle was taken into account as a crucial factor. CTE mismatch between the laser bar and the thermoelectric cooler (TEC) could bring large thermal stress to the packaging process, cause a lot of cracks at the corner of the TEC, and potentially lead to device failure. The optimized selection of materials and dimensions has been achieved through repeated calculation and simulation modeling (see Fig. 2). By doing this, the final packaging structure has prevented cracks from forming at the corner of the TEC. Digital simulations helped the developer to find the right solution rapidly. Mass production and stable performance of AL01 modules have proved that the package design is optimal.

Industrial applications. Kilowatt- or even hundred-kilowatt-level HPDL stacks are widely used for scientific and industrial applications (such as annealing, bonding, surface treatment, and others). A good example is Focuslight’s 6 kW DLight Series product. Applications such as solid-state laser pumping and materials processing require good beam quality from the diode-laser stack. The near-field nonlinearity along the laser bar (also known as “SMILE”), or the slight bend of the horizontal line connecting the emitters in the bar, is the main obstacle to achieving good beam quality. Minimizing the SMILE of HPDLs is key to achieving high brightness along the fast axis.

Thermal stress causes mechanical strain in the diode and changes the band structure, thus changing the characteristics of the diode laser with respect to threshold, wavelength, polarization, and SMILE. In addition, induced thermal stress in the laser device may cause damage to the laser chips/bars and consequently shorten lifetime of the device.

SMILE and stress controlling.3 The thermal stress affecting the performance and reliability of HPDLs is mainly caused by the CTE mismatch between the mounting substrate and laser chip. For HPDL packaging, packaging materials with high thermal conductivities and CTEs that match those of the semiconductor materials—such as gallium arsenide (GaAs), indium phosphide (InP), and gallium nitride (GaN)—are desired. Thermal-stress management is one of the most critical challenges to packaging of HPDLs.

The bonding of diode laser chips onto their heat sinks is the most important step in the packaging process. Mechanical stress generated in the bonding process has typically always caused chip deformation (SMILE) as the device cooled down from the solder melting point to room temperature. As a result, how to decrease the mechanical stress in the packaging process becomes the key to minimizing the SMILE value.

微信圖片_20201225220707.png

FIGURE 3. Two different laser-diode packaging structures: HMCC (a) and DMCC (b).

微信圖片_20201225220711.png

FIGURE 4. Simulation and experiment results: simulated stress of HMCC (a); simulated stress of DMCC (b); and experimental SMILE value with increasing CuW thickness (c).

For digital-simulation modeling of this process, different packaging structures and materials were selected (see Fig. 3); the simulated results are shown in Figure 4a and 4b. A continuous-wave (CW) 200 W diode-laser bar with a thermal density of greater than 500 W/cm2 can be bonded on a microchannel cooler (MCC) heat sink. Thermal-dissipation capability should be considered in the simulation, as well as how to minimize the “SMILE” value. The finite-element model (FEM) simulation results show that the compression stress on the laser bar decreases with the increase of copper-tungsten (CuW) submount thickness, as the CuW submount works as a buffer layer and can thus absorb stress. However, the laser bar out-of-plane strain (SMILE value) is approximately zero when the diode-laser array is directly bonded onto the heat sink without a submount; the SMILE value is maximized when the thickness of the CuW submount is increased to 44% of the heat sink. Beyond this point, the SMILE value decreases with increasing CuW submount thickness. As seen in Figure 4c, the experimental results are well aligned with the simulation results.2 Therefore, the thickness of the submount affects the near-field nonlinearity of a laser bar significantly.

Simulation and modeling of heat in packaging of HPDLs

Scientific applications. Besides the SMILE, spectral width is also one of the key parameters of a diode-laser vertical stack. Improving the stack’s spectral performance is very important for increasing production yield, reducing costs, and enhancing competitiveness. For some scientific applications, narrow spectral width is especially important.

Thermal design of HPDLs is critical, as a rise of junction temperature at the location of the p-n junction will adversely affect the output power, slope efficiency, threshold current, and lifetime of the device if the accumulated heat cannot be easily dissipated. Excessive heat can also cause spectral broadening and wavelength shift. Thermal management of HPDL devices has become a major challenge in laser design, manufacturing, and application.

微信圖片_20201225220715.png

FIGURE 5. Design of parallel format for liquid cooling.

In the design process for a vertical-stack laser, one of the main problems is the thermal crosstalk, which seriously affects the cooling efficiency. To avoid thermal crosstalk, a parallel liquid-cooling format is designed to overcome heat unevenness between the bars, effectively improving the thermal dissipation. Figure 5 shows the design of the parallel format of liquid cooling.

微信圖片_20201225220721.png

FIGURE 6. Thermal distribution of a MCC-based sack in CW mode.

In the following case, the thermal design and structure optimization of a vertical-stack laser with more than 20 bars was simulated. The simulation results in Figure 6 show that most of the heat is dissipated via the cooling-flow liquid. There is no significant accumulation of heat and the temperature gradient of each bar is relatively uniform. The maximum temperature on the stack is 60.13°C.

Based on the thermal simulation, the structure is optimized in many aspects, such as cooling-water flow rate, microchannel cooler design, and water distribution. The heat is taken away as quickly as possible by the cooling water, ensuring that no thermal accumulation exists between the bars.

Although the laser bars in vertical stacks are simultaneously conduction cooled and microchannel-liquid cooled, temperature nonuniformity remains among the bars due to thermal crosstalk and/or liquid flow nonuniformity. This nonuniformity can alter the wavelength of the bars and broaden the spectrum of the stacks.

微信圖片_20201225220725.png

FIGURE 7. Relationship between water flow and temperature.

To achieve a very narrow spectral width, in our work, advanced packaging processes have been used to maintain uniformity of temperature distribution. First, total temperature distribution is simulated and calculated (see Fig. 7). Next, the wavelength of each bar is selected to match the temperature distribution based on the simulation results. The third and last step is to use optimized packaging technology to achieve the same output wavelength. Using this method, the spectrum broadening of a vertical stack can be effectively controlled.

Simulation and modeling of heat and stress in optical collimation microlenses

Optical collimation microlenses, including fast-axis collimators (FACs), slow-axis collimator (SAC) arrays, homogenizers, diffusers, collimators, beam transformation systems (BTS), and so on, are widely used in DPSS lasers, materials processing, 3D sensing, immersive photolithography, flexible display, lidar, and other application fields. These microlenses are commonly fixed on mechanical frames by adhesives. Controlling the stress on lenses and reduce the risk of cracks is therefore of great importance.

微信圖片_20201225220938.png

FIGURE 8. Stress optimization on adhesion layer.

A typical example is shown in Figure 8. A disastrous crack is found on a diffuser, although the adhesion is good. Simulation was carried out to look for causes of such cracks; the simulation results show that a higher stress, up to 61.58 MPa, occurred at one corner of the diffuser, which corresponds to the actual crack. After the adhesion in the FEA model was precisely controlled and the program run again, the stress on the diffuser decreased to 32.96 MPa, as shown in the figure. The result shows the benefit of FEM in improving adhesion processes.

Easy-to-use FEM methods have been presented for evaluating the thermal performance of HPDLs and the stress distribution in HPDLs. These methods make it much easier to understand the physics of the addressed thermal phenomena and predict their thermal behavior and performance. Digital-simulation modeling should be conducted before the manufacturing of HPDLs, helping to reduce R&D costs and quickly guiding engineers to the correct approach if thermal and stress distributions in a package are taken into account. The methodology described here for the application of diode-laser packages can also be used beyond this area of engineering for the analysis and design of packaging structures.

ACKNOWLEDGEMENT

DLight is a registered trademark of Focuslight Technologies.

REFERENCES

1. X. Liu et al., J. Appl. Phys., 100, 1, 013104 (2006).

2. H. Zhang et al., “High power 250 W CW conductively cooled diode laser arrays with low SMILE,” Proc. SPIE, 11261, 112610C (Feb. 2020).

3. C. Zah et al., “Low SMILE vertically stacked laser bars enable kW modular line lasers,” High Power Diode Lasers and System Conf. (Coventry, England), 9-10 (2017); doi:10.1109/hpd.2017.8261079.

Jingwei Wang is Chief Scientist, Tuanwei Fu is CAE Engineer, and Xuejie Liang is Manager of the Design and Simulation Technology Department, all at Focuslight Technologies, Xi’an, China.

E-mails: wangjw@focuslight.com, futw@focuslight.com, and liangxj@focuslight.com; www.szhanpeng.cn.

關于炬光科技:

西安炬光科技股份有限公司成立于2007年,是一家全球領先的專業(yè)從事高功率半導體激光器、激光微光學元器件、光子技術應用解決方案的研發(fā)、生產及銷售的國家級高新技術企業(yè)。公司圍繞光子技術及應用領域,致力于為全球客戶提供高功率半導體激光器與激光微光學核心元器件及光子技術應用解決方案,形成了全面、完善的研發(fā)、生產及銷售服務體系。

上一篇:新品發(fā)布 | Flash LiDAR VCSEL光源模塊AX01 下一篇: 技術分享 | Laser Bonding of Displays
隱私偏好中心
為了使站點正常運行并為訪問者提供無縫和定制化體驗,Cookie 和其他類似技術(“Cookie”)非常重要。 Zoom 通過 Cookie 支持您使用我們的站點。 我們還通過 Cookie 允許您個性化定制您使用我們網站的方式,為您提供增強的功能,并不斷提高我們網站的表現。 如果您已啟用下面的定向 Cookie,我們可能會將根據您的賬戶類型或登錄狀態(tài)允許第三方廣告商使用他們在我們的站點上所設置的 Cookie 在我們的網站或產品上向您顯示與您相關的廣告內容。
您可以接受或拒絕除“絕對必要 Cookie”之外的所有 Cookie,或者定制下面的 Cookie 設置。 您可以隨時更改您的 Cookie 設置。 部分“絕對必要性 Cookie”可能會將個人數據傳送到美國。 要了解有關 Zoom 如何處理個人數據的更多信息,請訪問我們的隱私聲明
將下面標有“定向”的按鈕切換為關閉狀態(tài)之后,加利福尼亞州的居民可以行使“選擇拒絕出售個人信息”的權利。
接受Cookie
管理許可偏好
  • +目標定位
    我們的廣告合作伙伴可以通過我們的站點設置這些 Cookie。 這些 Cookie 可供廣告合作伙伴公司根據自有策略跟蹤您使用我們網站的情況,并可將相應信息與其他信息相結合,然后在我們的站點? ??其他站點上向您顯示相關廣告。 如果您不允許使用這些 Cookie,您將不會在 Zoom 網站或產品上看到個性化廣告。
  • +功能
    這些 Cookie 支持網站提供增強型功能和定制功能。 Cookie 可能由我們或由在我們的網頁上添加服務的第三方供應商設置。 如果您不允許這些 Cookie,那么部分或所有的這些服務可能無法正常運行。
  • +性能
    這些 Cookie 使我們能夠計算訪問量和流量來源,以便我們評估和改進我們的網站性能。 這些 Cookie 可幫助我們了解哪些頁面最受歡迎,哪些頁面最不受歡迎,并了解訪問者在網站上的瀏覽方式。 如果您不允許這些 Cookie,我們將不知道您何時訪問過我們的網站,也無法監(jiān)測網站性能。
  • +絕對必要

    始終處于活動狀態(tài)

    這些 Cookie 對于網站的運行是絕對必要的,且無法在我們的系統中關閉。 通常,只有在您做出近乎服務請求的行為(例如,設置您的隱私偏好、登錄或填寫表單)時才會設置這些 Cookie。 您可以將瀏覽器設置為阻止或提醒您注意這些 Cookie,但網站的某些部分可能會無法運行。
確認我的選擇
主站蜘蛛池模板: a黄色片| 欧美视频网址| 天天少妇被猛烈进入在线播放 | 日韩欧美激情| 可以看av的网站| 国产成人网| 特级av片| 人人插插| 亚洲精品五月| 男生舔女生的屁股| 免费色视频| 亚洲综合在线播放| 成人一级影视| wwwcom黄色| 精品三区| av激情网站| 国产福利一区二区视频| www.波多野结衣.com| 欧美日韩国产激情| 国产精品美女一区二区| 网爆门在线| 色婷婷五| 国产a级一级片| av看片网站| 久操视频免费看| 尤物国产精品| 欧美91看片特黄aaaa| 色淫五月天| 91视频二区| 天海翼视频在线观看| 永久免费精品影视网站| 欧美精品一区二| 羞羞色视频| japanese激情寡妇| 91特黄| 亚洲色啦啦狠狠网站| 国产美女视频一区| 日韩午夜伦| 国内精品久久久| 91视频com| 国产精品网站入口| 屁屁影院第一页| 国产欧美日本在线| 欧美国产在线视频| 高清毛片aaaaaaaaa郊外| 国产一级av毛片| 91操人| 中文字幕视频在线观看| 亚洲精品一卡二卡| 欧美一级免费电影| www.日韩av.com| 日本妇女毛茸茸| 99re视频在线播放| 精久久久久久| 四虎影院最新网址| 国产精品久久久久av| 骚五月| 黄色一区二区三区四区| 久久免费少妇高潮99精品| 欧美视频免费在线观看| 成人黄色三级| 91操操| 日韩一级电影在线观看| 91人人澡人人爽| 国产夜夜爽| 高清欧美精品xxxxx在线看| 涩涩天堂| 久久思思爱| 欧美内谢视频| 亚洲免费观看在线| 久久精品观看| 涩涩天堂| 就要干就要操| 久色视频在线播放| 一区精品在线观看| 国产一区在线视频观看| 精品免费| 四虎网站在线观看| 亚洲h| 欧美系列在线观看| 免费草逼视频| 久久对白| av生活片| 亚洲成人123| 精品一区av| 丁香一区二区三区| 久久久久影视| 91一区二区三区在线观看| 麻豆影视大全| 尹人综合网| 国产午夜电影在线观看| 国产精品无圣光| 精品视频99| 一区精品在线观看| 日本高清在线播放| 91传媒免费视频| 日本午夜激情| 不卡av电影在线| 红桃视频隐藏入口| xxxx国产精品| 日本a级在线| 日美韩av| 91麻豆精品在线观看| 思思99re| 国产精品视频久久久久| 中国黄色在线视频| 四虎影院黄色| 国产性xxxxx| 五月视频| 国产剧情一区二区| 91二区| 亚洲成人高清| 小柔的裸露日记h| 中文字幕在线精品| 粉嫩久久99精品久久久久久夜| 欧美日韩一区二区三区在线观看| 中文黄色片| 狼人狠狠干| 麻豆va| 黑人巨大猛交丰满少妇| 九一国产在线| 东北毛片| 一区二区麻豆| 丝袜淫脚| 国产九九九九| 午夜伦理在线观看| 日本欧美国产在线| 国产美女永久无遮挡| 中文字幕一区二区三区免费| 欧美一级不卡视频| 国产伦精品一区二区三区免| 亚洲精品爱爱| 色桃视频| 国产精品网友自拍| 少妇99| 女人一区二区三区| 日韩精品激情| 成人黄色生活片| 我和子的性关系高清视频| 天天干天天操天天拍| 国产一级片免费在线观看| 黄色avav| 就要操就要射| 一级做a爰片久久毛片潮喷动漫| 精品久久免费视频| 欧美成视频| 在线观看亚洲色图| 欧美不卡网| 国产精品性色| 深夜福利91| 黄色网免费看| bt天堂新版中文在线地址| 最新中文字幕在线| 爆操少妇| 国产一及黄色| 欧美成欧美va| 老牛影视av老牛影视av| 新版天堂资源中文8在线| 国产真实乱人偷精品视频| tushy欧美激情在线看| 色婷婷电影网| 欧美熟妇交换久久久久久分类| 夜夜草av| 琪琪秋霞午夜被窝电影网| 超碰人人人人| 国产51精品| 夜夜躁狠狠躁日日躁麻豆老人| 欧美欧美欧美欧美| 丁香婷婷综合激情| av影院在线播放| 99成人免费视频| 91超薄丝袜肉丝一区二区| 狠狠操天天射| 午夜伦理在线观看| 超碰97免费| 日本xxxwww| 欧美图片自拍偷拍| 日韩在线视频导航| 欧美性第一页| 国产激情视频一区二区三区| 思思在线精品| 在线日韩电影| 奇米影视777777| 55久久| 天降女子| 原神淫辱系列同人h| 成人性视频网站| 超碰女| 国产精品.com| 爱av导航| 综合图区欧美| 8x8x成人网| 怡红院久久| 四虎视频国产精品免费入口| 喷水了…太爽了高h| 久久久久久久久久久久久久久久久久| 全国男人的天堂网| 在线看你懂得| 毛片av在线| 亚洲综合站| 国产在线不卡av| 91午夜影院| 爱干视频| aa免费毛片| 一级黄色片网站| 亚洲一区二区三区四区av| 免费av日韩| 91av视频网站| 淫综合网| 加勒比一区在线| 成人亚洲视频| 男同精品| 国产精品男人的天堂| 五月激情综合| 在线国产播放| 在线中文视频| 亚洲视频久久| 亚洲爱视频| 欧美黄色录像| 91无限观看| 国产精品电影| 中文字幕日本| 欧美福利网| 久久久久国产精品视频| 精品国产一区三区| 精品黄色av| 四虎99| 精品久久五月天| 青青操视频在线播放| 国产成人精品久久二区二区| 亚洲精品乱码久久久久久蜜桃麻豆 | 久草精品在线观看| 国产综合免费视频| 日本一区二区三区在线免费观看| 五月天婷婷视频| 国产精品污视频| 操亚洲女人| 亚洲天堂岛| 久久肉| 毛片av在线播放| 夜夜躁很很躁日日躁麻豆| 黄色小视频免费| 毛片黄色一级| 911毛片| 午夜av一区二区三区| 中文字幕在线影院| 天天视频国产| 欧美日韩v| 成人a v视频| 香蕉综合视频| 无码人妻精品一区二区三| 欧美一级爱爱视频| 伊人www| 女人性做爰100部免费| 丰满熟妇乱又伦| 一区二区美女| 色免费视频| 欧美色呦呦| 视频二区欧美| 精品一区二区三区婷婷| 精品久久999| 欧美女优在线观看| 99久久久国产精品免费蜜臀| 一级特色黄色片| 国产美女明星三级做爰| 色鬼久久| 骚老师影院| 青青精品| 午夜网站在线播放| 日韩免费网址| 欧美人与禽猛交乱配视频| 午夜精品一区二| 色婷婷在线影院| 各处沟厕大尺度偷拍女厕嘘嘘| 欧美爽妇| 亚洲少妇30p| 国内精自视频品线六区免费| 国产精品天天看| 五月婷婷网| 国产小视频一区二区| 成人不卡视频| 操一操摸一摸| 夜夜夜影院| 午夜刺激视频| 少妇被各种姿势糟蹋视频网站| 一级黄色大片网站| 男女啪啪网站| 五月亚洲综合| 嫩草影院懂你的| melody在线观看| 影音先锋在线看片资源| 毛片的网站| 中国大陆一级片| 中文字幕激情| 日日骚一区| 国产视频一区二区三区在线播放| eeuss一区| 男女曰逼视频| 久久综合一区二区三区| 国产四区| 一区二区三区免费| 深夜免费视频| 色呦呦视频在线观看| 亚洲第一色| 和漂亮岳做爰3中文字幕| 亚洲 欧美 激情 另类 校园| 青青草久| 亚洲男人天堂2023| 好紧好爽好深再快点| 日产精品久久久久久久| 午夜欧美精品久久久久久久| 欧美日韩a级| 伊人色综合久久天天五月婷| 麻豆成人av| 国产一级啪啪| 91丝袜美女| 日本特级黄色大片| 色涩久久| 青草91| 日日操影院| 成人免费在线视频观看| 黄色特级大片| aa免费视频| 亚洲av无码久久精品色欲| 天天射天天| 亚洲一区二区三区不卡视频| 91福利视频导航| 成人影院免费| av资源站| 成人28深夜影院| 一区二区在线观看免费视频| 啪一啪在线| 国产精品探花视频| 国产淫语对白| 婷婷干| 精品人妻互换一区二区三区| 成人黄色免费网址| 日韩一二三区| 国产 丝袜 欧美中文 另类| av老司机在线| 免费观看黄色的网站| 国产夫妻自拍小视频| 日韩一卡二卡在线| 超碰女人| 日韩av电影在线播放| 四虎影视永久免费观看| 九九在线| 午夜激情婷婷| 欧美3p在线观看| www.五月婷婷| 每日av更新| 伊人网视频| 午夜影院中文字幕| 99热激情| 黄色片在哪看| 欧美一区黄片| 黄色7777| 色宗合| 91人妻一区二区三区蜜臀| 欧美日韩tv| 91亚瑟| 91日批| 成人黄色网址大全| 国产suv精品一区二区883| 永久免费精品| 顶级黄色片| 欧美性xxxxx极品娇小| 日韩免费专区| 国产成人无码精品久久二区三| 成人动漫在线观看一区二区三区| 日本精品视频一区二区三区四区| 亚洲双插| 久久久夜色| 国产天天操| 在线观看国产wwwa级羞羞视频| 四虎精品一区二区| 亚洲综合欧美精品电影| 欧美怡春院| 原创真实夫妻啪啪av| 国产伦理自拍| 国产精品不卡| 国产精品久久| 欧美日韩资源| 男人的天堂官网| 久久久精品网| 午夜剧场日本| 美女脱得一干二净| 国产色在线观看| 国产一二三四在线| 91精品综合久久久久久| 色老头免费视频| 日韩簧片| 亚洲国产欧美一区| 色黄av| 九九视频精品在线| 国产99久久久久| 小萝莉末成年一区二区| 日本免费看| 国产主播福利| 最近更新中文字幕第一页| 天天精品视频| 91深夜福利| 免费高清a级南片在线观看| 蜜臀av无码一区二区三区| 天天做天天爱夜夜爽毛片毛片| 超碰97久久| 大肉大捧一进一出好爽动态图| 毛片毛片毛片毛片毛片毛片毛片毛片| 日韩3级电影| 致命弯道8在线观看免费高清完整| 91传媒免费视频| 国产av不卡一区二区| 久久成人精品电影| 免费欧美一级片| 久久99国产精品视频| a视频网站| 成人交配视频| av电影网站在线| 夜夜夜久久久| 天堂在线中文资源| 亚洲wwwxxx| 中文字幕欧美人妻精品一区| 欧美大片网站| 国产理论| 国产精品rrvv| 国产毛片欧美毛片久久久| 91美女在线| 国产不卡高清| 国产三级精品三级在线观看| 高清日韩| 国产成人精品影院| 精品亚洲综合| 日韩一区二区三区四区五区| 日韩精品视频中文字幕| 大奶子在线| 男插女视频网站| 91在线日韩| 午夜精品影院| 国产高清精品一区二区| 99久久精品国产色欲| 中文字幕在线视频一区| 在线播放 亚洲| 欧美色图校园春色| 综合婷婷久久| 丁香色天天| 欧美日韩999| 人人爱干| 欧美日韩1区| 成人录像| 国产经典三级在线| 香蕉视频官方网站| 免费av不卡| 99re久热只有精品| 热久久最新| 特黄色大片| 久久入口| 亚洲v| 另类色综合| 色欲一区二区三区精品a片| 午夜网站入口| 亚洲精品三区| 麻豆91网站| www.色国产| 乱色精品无码一区二区国产盗| jizz俄罗斯| 日批视频在线| 黄色理论视频| 在线观看的av| 成av人片一区二区三区久久| 九七av| 精品久久电影| 爱爱视频久久| 热久久91| 日韩干干干| 亚洲第九十九页| 欧美在线资源| 蜜美杏av| 黑人狂躁日本妞一区二区三区| 欧美亚洲福利| 久久精品国产99麻豆蜜月| 99视频在线免费观看| lisaannxxxxx大战黑人| 国产精品 日韩| 久久人精品| 免费99视频| 爱爱av在线| 国产熟妇搡bbbb搡bbbb| 69人妻一区二区三区| 久久99九九| 91精品国自产拍天天拍| 91网址在线| 午夜影院网站| 五十路母| 亚洲九七| 人人天天操| 欧美黄片一区| 毛片视频网站| www.人人干| 国产超碰91| 怡春院欧美|