在线免费看污视频I亚洲欧美另类在线I狠狠干天天I99ri在线观看I九一avI女生毛片Ixxxrtxxx性国产Ia√在线视频I欧美日一本Ixxxx大片I丝袜五月天I国产肥熟I青青青在线视频I天堂网在线中文I亚洲综合成人avI日韩欧美中文I有码一区I亚洲电影avI欧美日韩乱国产I国产特黄

News & Events


    
HomeNews & Events News
Return

技術分享 | 仿真和建模在高功率半導體激光器封裝中的關鍵作用

Time:2020-11-16

Originally published on Laser Focus World?

炬光科技多年來一直注重基礎研究,每年在專業期刊、雜志、學術會議等平臺發表各類技術文章,并曾出版世界第一本高功率半導體激光器封裝專著。近日,《Laser Focus World》發表了炬光科技首席科學家王警衛等撰寫的技術文章《Simulation and modeling play key roles in high-power diode-laser packaging》,文章針對激光技術發展對封裝技術提出的新挑戰,介紹了仿真和建模在高功率半導體激光器封裝中發揮的關鍵作用。

文章概要如下:

高功率半導體激光器已廣泛應用于很多行業。隨著激光技術的發展,其輸出光功率越來越高,激光巴條的腔長也相應地由1mm增加到了4mm。因此,巴條的廢熱能量密度從200W/cm2急劇增加到>600W/cm2。為獲得低的“SMILE”,如<1μm,或防止巴條在貼片鍵合后出現裂紋,需要采用腔長1.5mm~4mm的巴條,并優化封裝結構,最大限度地降低熱應力。這兩者都給現有的封裝技術帶來了挑戰,從而有必要使用有限元模型(FEM)來計算和模擬高功率半導體激光器的熱行為和熱應力管理。

我們研究了在連續波(CW)或準連續波(QCW)模式下,不同封裝結構有限元模擬技術的應用,所涉及的計算和模擬仿真都是基于炬光科技的產品,包括單巴傳導冷卻/微通道系列、傳導冷卻G-stack、水冷疊陣和面陣。我們還提出了在制造高功率半導體激光器之前利用FEM工具進行熱與應力模擬的指導方針。此類模擬仿真結果可有效降低封裝結構或激光系統出現的潛在熱與應力風險,并有助于降低試驗成本、優化流程,最終滿足不同客戶的需求。

Simulation and modeling play key roles in high-power diode-laser packaging

Finite-element method (FEM) simulations reduce potential thermal and stress risks when designing packaging structures for high-power laser-diodes.

JINGWEI WANG, TUANWEI FU, and XUEJIE LIANG

FOCUSLIGHT TECHNOLOGIES INC.

High-power diode-lasers (HPDLs) are now widely used for industrial (materials processing procedures such as welding, cutting, surface treatment, etc.), scientific, and medical applications. The need to design advanced high-power laser packages, to understand the physics of the behaviors of these packages and its interfaces, and to prevent possible functional (optical) and mechanical (physical) failures are of obvious practical importance. As laser technologies develop, the output power of HPDLs has grown, along with the cavity length of diode laser bars increasing from 1 to 4 mm. As a result, the waste-heat energy density of a single diode laser bar has increased dramatically from 200 W/cm2 to more than 600 W/cm2.

Many failures in HPDLs—for example, bonding interfaces—are directly related to the packaging.1 Thermal behaviors of the bonding interfaces and thermal stresses between the bonding interfaces are the major factors affecting the functional and structural performance of HPDLs. If the accumulated heat cannot readily escape, the elevated temperature and thermally induced stress at the location of the p-n junction will not only adversely affect the output power, slope efficiency, threshold current, and device lifetime, but could also cause spectral broadening and wavelength shifts.2 The emitting wavelengths will shift if the junction temperature of the emitters across the array is not well controlled and/or not uniform. The above-mentioned scenarios make the thermal management of high-power laser devices a major challenge in designing, manufacturing, and utilizing HPDLs.

Simulation and modeling of thermal stress in packaging of HPDLs

微信圖片_20201225220659.png

FIGURE 1. An AL01 1064 nm laser module for lidar. (Courtesy of Focuslight)

Automotive lidar has become a very popular application for lasers in recent years. Focuslight Technologies (X’ian, China) offers various products for automotive lidar applications. Focuslight’s AL01 laser module (see Fig. 1) is designed for flash lidar applications. The module is a diode-pumped solid-state (DPSS) laser that uses Q-switch technology to enable pulse energies of up to 1.5 mJ per 3 ns pulse at 1064 nm wavelength. To ensure its stability at automotive-grade temperatures (-40° to 80°C), the module was designed and manufactured with advanced bonding and assembly processes; some special materials have been used as well.

微信圖片_20201225220703.png

FIGURE 2. Structure and stress: mismatched CTE (a) and matched CTE (b).

During the design process, the coefficient of thermal expansion (CTE)-matched principle was taken into account as a crucial factor. CTE mismatch between the laser bar and the thermoelectric cooler (TEC) could bring large thermal stress to the packaging process, cause a lot of cracks at the corner of the TEC, and potentially lead to device failure. The optimized selection of materials and dimensions has been achieved through repeated calculation and simulation modeling (see Fig. 2). By doing this, the final packaging structure has prevented cracks from forming at the corner of the TEC. Digital simulations helped the developer to find the right solution rapidly. Mass production and stable performance of AL01 modules have proved that the package design is optimal.

Industrial applications. Kilowatt- or even hundred-kilowatt-level HPDL stacks are widely used for scientific and industrial applications (such as annealing, bonding, surface treatment, and others). A good example is Focuslight’s 6 kW DLight Series product. Applications such as solid-state laser pumping and materials processing require good beam quality from the diode-laser stack. The near-field nonlinearity along the laser bar (also known as “SMILE”), or the slight bend of the horizontal line connecting the emitters in the bar, is the main obstacle to achieving good beam quality. Minimizing the SMILE of HPDLs is key to achieving high brightness along the fast axis.

Thermal stress causes mechanical strain in the diode and changes the band structure, thus changing the characteristics of the diode laser with respect to threshold, wavelength, polarization, and SMILE. In addition, induced thermal stress in the laser device may cause damage to the laser chips/bars and consequently shorten lifetime of the device.

SMILE and stress controlling.3 The thermal stress affecting the performance and reliability of HPDLs is mainly caused by the CTE mismatch between the mounting substrate and laser chip. For HPDL packaging, packaging materials with high thermal conductivities and CTEs that match those of the semiconductor materials—such as gallium arsenide (GaAs), indium phosphide (InP), and gallium nitride (GaN)—are desired. Thermal-stress management is one of the most critical challenges to packaging of HPDLs.

The bonding of diode laser chips onto their heat sinks is the most important step in the packaging process. Mechanical stress generated in the bonding process has typically always caused chip deformation (SMILE) as the device cooled down from the solder melting point to room temperature. As a result, how to decrease the mechanical stress in the packaging process becomes the key to minimizing the SMILE value.

微信圖片_20201225220707.png

FIGURE 3. Two different laser-diode packaging structures: HMCC (a) and DMCC (b).

微信圖片_20201225220711.png

FIGURE 4. Simulation and experiment results: simulated stress of HMCC (a); simulated stress of DMCC (b); and experimental SMILE value with increasing CuW thickness (c).

For digital-simulation modeling of this process, different packaging structures and materials were selected (see Fig. 3); the simulated results are shown in Figure 4a and 4b. A continuous-wave (CW) 200 W diode-laser bar with a thermal density of greater than 500 W/cm2 can be bonded on a microchannel cooler (MCC) heat sink. Thermal-dissipation capability should be considered in the simulation, as well as how to minimize the “SMILE” value. The finite-element model (FEM) simulation results show that the compression stress on the laser bar decreases with the increase of copper-tungsten (CuW) submount thickness, as the CuW submount works as a buffer layer and can thus absorb stress. However, the laser bar out-of-plane strain (SMILE value) is approximately zero when the diode-laser array is directly bonded onto the heat sink without a submount; the SMILE value is maximized when the thickness of the CuW submount is increased to 44% of the heat sink. Beyond this point, the SMILE value decreases with increasing CuW submount thickness. As seen in Figure 4c, the experimental results are well aligned with the simulation results.2 Therefore, the thickness of the submount affects the near-field nonlinearity of a laser bar significantly.

Simulation and modeling of heat in packaging of HPDLs

Scientific applications. Besides the SMILE, spectral width is also one of the key parameters of a diode-laser vertical stack. Improving the stack’s spectral performance is very important for increasing production yield, reducing costs, and enhancing competitiveness. For some scientific applications, narrow spectral width is especially important.

Thermal design of HPDLs is critical, as a rise of junction temperature at the location of the p-n junction will adversely affect the output power, slope efficiency, threshold current, and lifetime of the device if the accumulated heat cannot be easily dissipated. Excessive heat can also cause spectral broadening and wavelength shift. Thermal management of HPDL devices has become a major challenge in laser design, manufacturing, and application.

微信圖片_20201225220715.png

FIGURE 5. Design of parallel format for liquid cooling.

In the design process for a vertical-stack laser, one of the main problems is the thermal crosstalk, which seriously affects the cooling efficiency. To avoid thermal crosstalk, a parallel liquid-cooling format is designed to overcome heat unevenness between the bars, effectively improving the thermal dissipation. Figure 5 shows the design of the parallel format of liquid cooling.

微信圖片_20201225220721.png

FIGURE 6. Thermal distribution of a MCC-based sack in CW mode.

In the following case, the thermal design and structure optimization of a vertical-stack laser with more than 20 bars was simulated. The simulation results in Figure 6 show that most of the heat is dissipated via the cooling-flow liquid. There is no significant accumulation of heat and the temperature gradient of each bar is relatively uniform. The maximum temperature on the stack is 60.13°C.

Based on the thermal simulation, the structure is optimized in many aspects, such as cooling-water flow rate, microchannel cooler design, and water distribution. The heat is taken away as quickly as possible by the cooling water, ensuring that no thermal accumulation exists between the bars.

Although the laser bars in vertical stacks are simultaneously conduction cooled and microchannel-liquid cooled, temperature nonuniformity remains among the bars due to thermal crosstalk and/or liquid flow nonuniformity. This nonuniformity can alter the wavelength of the bars and broaden the spectrum of the stacks.

微信圖片_20201225220725.png

FIGURE 7. Relationship between water flow and temperature.

To achieve a very narrow spectral width, in our work, advanced packaging processes have been used to maintain uniformity of temperature distribution. First, total temperature distribution is simulated and calculated (see Fig. 7). Next, the wavelength of each bar is selected to match the temperature distribution based on the simulation results. The third and last step is to use optimized packaging technology to achieve the same output wavelength. Using this method, the spectrum broadening of a vertical stack can be effectively controlled.

Simulation and modeling of heat and stress in optical collimation microlenses

Optical collimation microlenses, including fast-axis collimators (FACs), slow-axis collimator (SAC) arrays, homogenizers, diffusers, collimators, beam transformation systems (BTS), and so on, are widely used in DPSS lasers, materials processing, 3D sensing, immersive photolithography, flexible display, lidar, and other application fields. These microlenses are commonly fixed on mechanical frames by adhesives. Controlling the stress on lenses and reduce the risk of cracks is therefore of great importance.

微信圖片_20201225220938.png

FIGURE 8. Stress optimization on adhesion layer.

A typical example is shown in Figure 8. A disastrous crack is found on a diffuser, although the adhesion is good. Simulation was carried out to look for causes of such cracks; the simulation results show that a higher stress, up to 61.58 MPa, occurred at one corner of the diffuser, which corresponds to the actual crack. After the adhesion in the FEA model was precisely controlled and the program run again, the stress on the diffuser decreased to 32.96 MPa, as shown in the figure. The result shows the benefit of FEM in improving adhesion processes.

Easy-to-use FEM methods have been presented for evaluating the thermal performance of HPDLs and the stress distribution in HPDLs. These methods make it much easier to understand the physics of the addressed thermal phenomena and predict their thermal behavior and performance. Digital-simulation modeling should be conducted before the manufacturing of HPDLs, helping to reduce R&D costs and quickly guiding engineers to the correct approach if thermal and stress distributions in a package are taken into account. The methodology described here for the application of diode-laser packages can also be used beyond this area of engineering for the analysis and design of packaging structures.

ACKNOWLEDGEMENT

DLight is a registered trademark of Focuslight Technologies.

REFERENCES

1. X. Liu et al., J. Appl. Phys., 100, 1, 013104 (2006).

2. H. Zhang et al., “High power 250 W CW conductively cooled diode laser arrays with low SMILE,” Proc. SPIE, 11261, 112610C (Feb. 2020).

3. C. Zah et al., “Low SMILE vertically stacked laser bars enable kW modular line lasers,” High Power Diode Lasers and System Conf. (Coventry, England), 9-10 (2017); doi:10.1109/hpd.2017.8261079.

Jingwei Wang is Chief Scientist, Tuanwei Fu is CAE Engineer, and Xuejie Liang is Manager of the Design and Simulation Technology Department, all at Focuslight Technologies, Xi’an, China.

E-mails: wangjw@focuslight.com, futw@focuslight.com, and liangxj@focuslight.com; www.szhanpeng.cn.

關于炬光科技:

西安炬光科技股份有限公司成立于2007年,是一家全球領先的專業從事高功率半導體激光器、激光微光學元器件、光子技術應用解決方案的研發、生產及銷售的國家級高新技術企業。公司圍繞光子技術及應用領域,致力于為全球客戶提供高功率半導體激光器與激光微光學核心元器件及光子技術應用解決方案,形成了全面、完善的研發、生產及銷售服務體系。

Prev:Fairy series non-invasive body sculpting LD module FR06 Next: 905nm Laser Transmitter for Beam Steering LiDAR System
Privacy Preference Center
Cookies and other similar technologies ("cookies") are very important in order for the site to function properly and provide a seamless and customized experience for visitors. Zoom supports your use of our site through cookies. We also allow you to customize the way you use our website through cookies, provide you with enhanced functions, and continuously improve the performance of our website. If you have enabled the following targeted cookies, we may allow third-party advertisers to use the cookies they set on our site to display advertising content related to you on our website or products according to your account type or login status< br> You can accept or reject all cookies except "absolutely necessary cookies", or customize the cookie settings below. You can change your cookie settings at any time. Some "absolutely necessary cookies" may transfer personal data to the United States. To learn more about how Zoom handles personal data, please visit ourPrivacy Statement
After the button labeled "Orientation" below is switched off, California residents can exercise the right to "choose not to sell personal information".
Accept Cookie
Manage Permission Preferences
  • +Target Location
    Our advertising partners can set these cookies through our site. These cookies can be used by advertising partners to track your use of our website according to their own policies, and can combine the corresponding information with other information, and then display relevant advertisements to you on our site and other sites. If you do not allow the use of these cookies, you will not see personalized ads on the Zoom website or products.
  • +Function
    These cookie support websites provide enhanced and customized features. Cookies may be set by us or by third-party providers who add services to our web pages. If you do not allow these cookies, some or all of these services may not work properly.
  • +Performance
    These cookies enable us to calculate traffic and traffic sources so that we can evaluate and improve the performance of our website. These cookies can help us understand which pages are the most popular and which pages are the least popular, and understand how visitors browse the website. If you do not allow these cookies, we will not know when you have visited our website, nor can we monitor website performance.
  • +Absolutely Necessary

    Always Active

    These cookies are absolutely necessary for the operation of the website and cannot be closed in our system. Generally, these cookies will only be set when you make a near service request behavior (for example, setting your privacy preferences, logging in, or filling out a form). You can set your browser to block or remind you of these cookies, but some parts of the website may not work.
Confirm My Choice
主站蜘蛛池模板: 亚洲欧美色图区| 成年人福利网站| 久久躁狠狠躁夜夜av麻豆| 美女免费福利视频| 日韩三级视频| gogo人体做爰大胆裸体| 69亚洲乱| 国产91影院| 久久久久一区二区三区| 激情久| 亚洲精品人体一区二区三区| 男人天堂伊人| 久久色资源| 少妇影院在线观看| 美女在线国产| 日本免费视频| 午夜神马福利| 国产资源在线免费观看| 中文字幕第九页| 国产大尺度在线| 特级黄色一级大片| 日韩久久影视| 91免费视频国产| 免费黄色在线网站| 亚州色图欧美色图| 国产欧美不卡| 久久亚洲成人网| 免费看黄禁片| 欧美成人精品欧美一级私黄| 国产做受麻豆动漫| 老司机午夜福利视频| 成人hd| 99视频免费看| 色久婷婷| 日日日夜夜操| 91精品福利少妇午夜100集| 日日爱夜夜操| 人人澡人人透人人爽| 亚洲熟女乱综合一区二区三区| 春物催眠| 日韩欧美一区二区三区黑寡妇| 亚洲一区二区综合| 免费观看黄色网| japanese丰满mature47| 中文字幕免费高清在线| 黄色小说视频网站| 97人人人| 青青草dvd| 欧美 日韩 国产 成人| 国产精品videossex国产高清| 好吊日在线观看| 久久人人插| 宅男噜噜噜| 影院一区| 亚洲wuma| 夜夜骚网站| 97碰碰碰免费公开在线视频| 日韩在线观看视频网站| 牛牛影视免费观看| 鬼眼 电影| 欧美午夜久久久| 久久婷婷久久| 一级毛片黄色| 日韩欧美一级片| 亚洲一区毛片| 伊人网国产| 中文字幕狠狠干| 国产大奶在线观看| 成人精品三级av在线看| 成人免费毛片男人用品| 国产精品欧美久久久久竹菊| 国产精品xxx在线观看| 成人入口| 国产日韩免费在线观看| 日本不卡在线| 精品成人免费视频| 一级特黄aa大片免费播放| 不卡影院一区二区| 成人高潮片免费| 92视频在线| 午夜黄色影院| 韩国伦理在线| 国产一级免费在线观看| 奇米影视大全| 五个女闺蜜把我玩到尿失禁| 99久久久无码国产精品免费| 张津瑜国内精品www在线| 玖玖爱免费视频| 亚洲精品成人在线| 国产精品tv在线观看| 国产高清精品软件丝瓜软件| 一级毛片儿| 欧美色交| 绯色av蜜臀vs少妇| 涩涩视频在线播放| 亚洲福利午夜| 朋友的姐姐2在线观看| 欧美乱视频| 91情侣偷在线精品国产| 国内精品久久久久久久日韩| 中文字幕在线国产| 人人爱在线视频| 国产98在线 | 日韩| 91天天操| 欧美性受xxxx黒人xyx性爽| 日本高清成人vr专区| 公侵犯人妻一区二区三区| 亚洲精品一| 日批在线观看视频| 色女仆影院| 精品国产视频一区二区三区| 亚洲免费网址| 一区二区啪啪啪| 日本美女动态图| 亚洲国产69| 国产av剧情一区| 麻豆视频免费在线| 日韩特级毛片| 奇米久久久| 久久久免费看视频| xxx精品| 非洲黑妞xxxxhd精品| 在线观看羞羞漫画| 中文字幕精品在线观看| 日本爱爱免费视频| xxx一区| 99久久久无码国产精品免费| 国内av一区二区| 成人中文在线| 国产免费一级片| 久久精品国产精品亚洲毛片| 污污内射在线观看一区二区少妇| 尤物av无码色av无码| 爱爱爱网| 99热久久这里只有精品| 久久精品在线免费观看| 91婷婷| 欧洲美一区二区三区亚洲| 国产露脸xxⅹ69| 国产盗摄精品| 成年人黄色免费网站| 国产偷拍一区二区三区| 999一区二区三区| 国产精品亚洲综合| 成人免费看类便视频| 亚洲欧美成人网| 婷婷开心激情| 亚洲视频黄色| 青草99| www.三级.com| av瑟瑟| 青青草原综合久久大伊人精品| 日韩av在线网| 在线观看免费成年人视频| 欧美视频四区| 国产精品区二区三区日本| 午夜影院在线播放| 久久九九99| 97福利在线| 欧美日韩性生活| 极品尤物一区二区| 毛片动态图| 91精品国自产在线观看| 性视频一区| 免费超碰在线观看| videosgratis极品另类灌满高清资源| 国产高清一区二区| 黄色国产网站| 手机看片福利视频| 久久综合se| 日本草草视频| 国精品一区二区| 韩国日本欧美一区| 老头老太吃奶xb视频| 国产精品精东影业| 天天干天天草天天射| 天天操夜夜操夜夜操| 手机在线日韩| 日韩a级在线观看| 青青青在线播放| 中国一级特黄毛片大片久久| 永久免费在线观看视频| 自拍偷拍欧美日韩| 国内精品偷拍视频| 小说肉肉视频| 色欧美亚洲| 国产一区二区三区色淫影院| 久久久久影视| 国产乱码久久久久| 狠狠狠干| 日美毛片| 亚洲最大的网站| 国产一区福利视频| 亚洲精品白浆| 最近中文字幕av| 一区二区视频| 四虎四虎院5151hhcom| 中文字幕av在线免费观看| 小泽玛利亚一区二区免费| 性高跟丝袜xxxxhd| 亚洲视频1区| 91精品网站| 日本高清片| 在线视频一区二区| 亚洲宗人网| 自拍黄色片| 国产浮力第一页| 超碰在线人人爱| 欧美大片一区| 无毒黄色网址| 一区二区导航| 亚洲女在线| 影音先锋激情| 日本高清免费观看| 国产一区二区在线观看免费视频| 污片免费网站| 国产一区91精品张津瑜| 大黄专集在线观看| 欧美激情久久久久久久| 色佬在线观看| 天天操天天透| av免费看网站| 人人爽在线观看| 天天色天天干天天色| 美女打屁股网站| 涩777视频在线| 调教久久| 日韩天天干| 久久加勒比| 成人网址在线观看| 自拍偷拍色| 欧美一区黄片| a级免费观看| 久久成人免费电影| 性色av免费观看| 亚洲激情图片区| 黄色一级一片免费播放| 国产chinesehd天美传媒| 4484在线观看视频| 久久久久一区二区三区| 久久久久久久一区二区三区| 欧美综合激情| 日韩搞逼| 日韩城人免费| 男人天堂av片| 自偷自拍亚洲| 国产免费自拍| 亚洲综合在线观看视频| 国产精品成人免费一区久久羞羞| 欧美视频一区二区在线观看| 91精品视频在线播放| 欧美精品色| 国语播放老妇呻吟对白| 午夜爽爽影院| 色妞干网| 黄色com| 999精品网站| 午夜寂寞自拍| 欧美精品video| 精品破处| 91av片| 久久婷婷久久| 北条麻妃青青久久| 99er99| 亚洲精品久久久狠狠狠爱| 日韩淫片| 在线免费观看av网站| 黄色片中国| 亚洲色偷偷综合亚洲av伊人 | 91偷拍一区二区| 综合网久久| 最色网站| 国产成人手机视频| 精产国品一二三产区乱码| 亚洲综合网在线| 国产精品污www在线观看| 国产中文综合免费| 九九热精品国产| 麻豆视频入口| 超碰在线人人干| 操天天操| 中文字幕在线视频网站| 激情网综合| 欧美精品亚洲精品日韩精品| 波多野42部无码喷潮| 日韩欧美第一区| 亚洲爆爽av| 久久久三级免费电影| 一级特黄色| 免费看黄色一级视频| 亚洲青草视频| 精品日韩在线观看| 天天干夜夜怕| 99久久久久| 永久免费未满蜜桃| 中文字幕第一页av| 在线免费观看a视频| 潘金莲aa毛片一区二区| 欧美色二区| 亚洲免费婷婷| 日韩av在线免费观看网站| 99精品区| 伊人7| 亚洲精品毛片一级91精品| 国产高清在线不卡| 伊人老司机| 国产免费大片| 国产 欧美 日韩| 午夜毛片在线观看| av午夜天堂| 亚洲高清视频免费观看| 在线观看麻豆| 中文字幕视频免费| 成人免费av电影| 最新av观看| 日韩三级av| 青娱乐超碰| av动漫网| 91亚洲精品国偷拍自产在线观看| a日韩| 亚欧在线| 久久精品国产一区二区三区 | 欧美亚洲一区在线| 国产视频第三页| 欧美xxxxx精品| 躁躁躁日日躁| 国产一区高清| 成人不卡在线观看| 欧美国产黄色| 日本免费一区视频| 亚洲精品视频久久久| 涩涩成人网| 少妇aaaa| 禁漫天堂在线| 91在线看| 亚欧美在线| 日韩中文在线播放| 久久久久香蕉视频| 波多野结衣绝顶大高潮| 狠狠爱综合| 爱情岛论坛成人av| 少妇精品一区二区三区| 中文字幕av网| 免费高清a级南片在线观看| 看免费毛片| 伊人视频| 色男人av| 国产自偷自偷免费一区| 毛片黄色片| 色www国产亚洲阿娇| 欧美精品aaaa| 亚洲а∨天堂久久精品喷水| 黄色一级小说| 亚洲欧美日韩第一页| 男人久久久| 国产精品亚洲色婷婷99久久精品| 欧美整片sss| 韩国伦理片在线看| 成人一级影院| 91av在线影院| 免费a v观看| 国产麻豆电影在线观看| 91尤物国产福利在线观看| 99久久99久久精品免费看蜜桃| 午夜性生活视频| 一区二区乱码| 99热在线精品观看| 国产91高跟丝袜| 黄色三级国产| 天海翼一区二区三区高清在线| 久久www免费人成看片好看吗| 欧美日一本| www.蜜臀av.com| 精品香蕉视频| 天堂va久久久噜噜噜久久va| 鸥美毛片| 青青草在线视频网站| 名器高h喷水荡肉爽文| 成人第一页| 亚洲精品综合一区二区| 亚洲激情免费视频| 亚洲一级黄色| 性猛交富婆╳xxx乱大交一| 国产精品国产三级国产普通话蜜臀| 国产色视频在线| 少妇综合网| 婷婷五情天综123| 欧美视频偷拍| 手机在线观看免费av| 视频一区三区| 深夜免费在线视频| 色婷婷激情综合| 91色精品| 国产亚洲精| 精品二区视频| 女人av在线| 永久免费毛片| 亚洲精品视频久久| 女人18片毛片60分钟| 免费在线观看一区| 国产成人午夜福利在线观看| 国产三级精品三级在线| 午夜视频一区二区三区| 激情婷婷| 日日热| 波多野结衣一区二区三区四区| 伊人欧美视频| 超碰在线看| www天堂在线| 九色porny视频| zljzljzlj日本人免费| 黄av网站| japan少妇| 成人h视频在线观看| wwwxxx日韩| 牛牛热在线视频| 亚洲人成人无码网www国产| 美女在线网站| 麻豆成人网| 色羞羞| 探花av在线| 毛片成人| 漂亮人妻被黑人久久精品| 午夜视频91| 国产一级久久久| 亚洲激情三区| 免费拍拍拍网站| 久久久久99精品成人片直播| 国产免费看片| 久久久久久久高潮| 口爆吞精一区二区三区| 天天操天天看| 18岁成人毛片| 爱色成人网| 亚洲一区视频在线播放| 国产精品日韩专区| 久久午夜在线| 日本一区二区性生活| 夜夜狠| 四色在线| 一区二区三区www| 国产制服丝袜在线| 日本在线视频www| 免费在线看黄视频| 日日日干干干| av网站一区二区| www.xxx久久| 亲子乱aⅴ一区二区三区| 美女av片| 亚洲国产成人精品女人| 日韩av激情| 亚洲伦理网| 毛片黄片免费观看| 一区在线看| 亚洲av电影一区二区| 国产a视频| 成年人午夜影院| 97偷拍在线视频| 国际av在线| 在线免费黄色| 免费成人高清在线视频| 亚洲成人激情av| 超碰国产精品一区二区| 男人天堂av电影| 一级片免费视频| 欧美性视频在线播放| 久久综合草| 热久久最新网址| 99草视频| 亚洲精品白浆高清久久久久久| 男人天堂网在线| 久久高清| 亚洲女人逼| 97欧美视频| 美女啪啪免费视频| 亚洲高清乱码午夜电影网| 免费在线观看黄| 五月天超碰| 四虎最新在线| 日韩三级免费| 免费又黄又爽又色的美女图片| 欧美区一区二区三| 久久久精品网| 全国探花| 最新国产小视频| 国产精品12区| 桃花色综合影院| 精品国产第一页| 大陆日韩欧美| 天堂在线亚洲| 中国女人奶大好爽| 50部乳奶水在线播放| 无码国产色欲xxxx视频| xxxx国产精品| 久久四虎影院| 毛片1000部免费看| heyzo在线播放| 久久蜜臀| 亚洲视频网站在线观看| 日韩经典三级|